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The crack-size do and the strength distributions of structural ceramics after non-destructive 
inspection (NDI) were analysed by supposing penny-shaped cracks to be inner cracks. The 
theoretical crack-size distribution function after NDI coincides well with the experimental data 
for a three-point bending test of HP-Si3N4 in the region dc > 30#m. The distribution function 
of the fracture strength calculated from the crack-size data after NDI coincides well with the 
experimental data. 

1. Introduct ion 
It is well known that structural ceramics are extremely 
brittle and they catastrophically fail from the weakest 
defect within a body or lying on its surface such as a 
crack. Therefore in order to assure the structural 
reliability and to improve the strength of ceramics, it 
is essential to analyse the size distribution of the crack 
which may cause fracture of ceramics. In previous 
reports [1, 21, the authors suggested a new statistical 
theory of fracture location by combining the Oh-  
Finnie theory [3] with the competing risk theory, 
which enables us to estimate the crack-size distribu- 
tion and the distribution of the fracture locations for 
multiple fracture origins. 

On the other hand, the so-called "proof test" plays 
an important role in assuring the smallest strength 
(inert strength) or the smallest life-time (slow crack 
growth) [4, 5] of ceramic components; however, this 
method needs a lot of work and time. 

Recently, screening techniques based on non- 
destructive inspection (NDI) using the ultrasonic 
microscope, Raman microscope or X-ray CT-scanner 
have been developing rapidly. However, quantitative 
analyses of the crack-size distribution and the strength 
distribution of the specimens after screening have not 
yet been performed. 

In this report, we analyse the crack-size distribution 
and the strength distribution of specimens subjected 
to a screening process by non-destructive inspection. 
We apply the analysis to experimental results on hot 
pressed Si3N 4 [6]. 

2. Crack-size distr ibution 
2.1, Uniaxial tension 
The crack-size distribution function of a body subjec- 
ted to uniaxial tension is given by [7] 

{ I(;) l]2Klc~ml } 
HT(do) = exp -- V d( m~/2 (1) 

0"01 _] 

where dc is the crack size which causes fracture, V is 
the non-dimensional total volume of the body, K~ is 
the fracture toughness and ml, a01 are the shape and 
scale parameters, respectively. We see from Equa- 
tion 1 that the relation between lnln[1/HT(do)] and 
In do is linear. We have already suggested that we can 
estimate Weibull's shape and scale parameters using 
the above relation [7]. 

2.2. Three-point  bending  
The crack-size distribution function in the case of 
three-point bending is given by [1, 2] 

{ I{~)r/\''2K~c Lh ]m,} 
xexp dxdyddc 

(2) 

where Ve0 = 2bLh/(m~ + t) 2 is the non-dimensional 
effective volume; b, L and h are the width, lower span 
and the half length of the height of a specimen, respec- 
tively; x and y are the coordinate variables as shown 
in Fig. 1. xt and Yt indicate the total domain of each 
variable. Since Equation 2 cannot be integrated 
analytically, we do not know whether the lnln[1/ 
HB(dc) ] against In d~ relation is linear or not without 
doing numerical calculations. 

3. Crack-size and strength distribution 
after non-destructive inspection 

First we formulate a new distribution function of 
crack size after removing those cracks larger than a 
definite value (threshold value), dp, by a screening 
technique which may lead to an improved distribution 
function of the fracture strength. As an example, we 
analyse the three-point bending test data of HP-Si3N 4 
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Figure 1 The coordinate systems in the three-point bending test. 

T A B L E  I Weibull parameters and fracture toughness of HP- 
Si 3 N 4 

~1 a01 K~c 
(MPa) (MPa m 1/2 ) 

15.79 959.9 4.06 

3.1. Crack-size dis t r ibut ion  func t ion  
Suppose that the specimens which contain cracks 
larger than dp are removed from a lot by a screening 
technique, for example, NDI. The crack-size distribu- 
tion function H,(dc) at fracture origin of the remain- 
ing specimens for inert circumstances are directly 
formulated as 

;~c hB(dc)dd ~ 

Ha(d~) - ijp hB(d~)dd~ (3) 
d u  

where hB(d~) = dHB(dc)/ddo. 
Fig. 2 shows the calculated results of the lnln[1/ 

Ha(dc)]-ln dc relation, where the Weibull parameters 
obtained from the three-point bending test of HP- 
S i 3 N  4 [6] are used (see Table I) [8, 9]. Curves I and II 
in Fig. 2 indicate the theoretical curves before and 
after screening, respectively, where dp is taken to be 
equal to 30#m. Note that both curves are convex, 
although that for uniaxial tension (Equation 1) is 
linear. Crosses and triangles in Fig. 2 are the experi- 
mental data plotted by the mean rank method; tri- 
angles denote the data obtained by removing values 
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Figure 2 The crack-size distributions (+) before and (zx) after NDI. 
The solid lines are the calculated results, dp is the threshold crack 
size in NDI. 

less than dp. In the region do > 30 #m, the theoretical 
curves almost coincide with the experimental data, 
which shows the validity of this analysis. In the region 
d~ < 30#m, the theoretical curve deviates from the 
experimental data. As stated in the previous report [7], 
this phenomenon may be caused by the crack-size 
dependency of the fracture toughness KI~. Further 
study is needed on this problem, although the above 
region is less important for maintaining the structural 
reliability of ceramic components. 

3.2. S t r eng th  d is t r ibut ion  
For the next step let us analyse the strength distribu- 
tion after NDI using Equations 2 and 3. 

Transforming the variable d~ into the maximum 
stress at fracture O'm~x, we obtain a two-parameter 
Weibull distribution function from Equation 2. On 
the other hand, from Equation 3 we obtain the follow- 
ing equation (see Appendix): 

F4(O_max ) __- F(0"max) - F(ap) (4) 
1 - 

where 

-V~ o F(~) = 1 - exp e0 

w h e r e  O-p coincides with a proof stress corresponding 
to dp for the reason stated in the following. 

Suppose that all the specimens which contain cracks 
larger than dp are removed from the population. Then 
the largest crack contained in the remaining specimens 
is no more than dp, The smallest strength of the 
remaining specimens may be realized when the largest 
crack dp lies at and perpendicular to the maximally 
stressed point. Therefore, the smallest strength (%) of 
the population after NDI (threshold value dp) is given 
by the equation 

O'p = all/2 ( 5 )  
~p  

crp corresponds to the so-called "proof  stress" in a 
proof test. Curve I in Fig. 3 is the theoretical Weibull 
plot calculated from a two-parameter Weibull distri- 
bution function. Curve II in Fig. 3 is calculated from 
Equation 4 putting ~p = 930MPa, which corres- 
ponds to dp = 30 #m. Triangles in the figure are simu- 
lated data obtained by omitting those data less than 
930MPa, where the Kaplan-Meier  method [10] is 
adopted. The theoretical Curve II fits well with the 
simulated data. We see from this figure that ap behaves 
like the proof stress as stated above. 

It goes without saying that the above approach is 
valid for components containing many kinds of frac- 
ture origin subjected to an arbitrary stress state. 

4.  C o n c l u s i o n s  
We analysed the crack-size (d~) and the strength distri- 
butions of specimens after NDI by supposing penny- 
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Figure 3 The Weibull plots of the 
maximum fracture stresses (+) 
before and (zx) after NDI. The 
solid lines are the calculated 
results. 

shaped cracks to be inner cracks. The results obtained 
in the work are as follows: the theoretical crack-size 
distribution function after NDI  coincides well with the 
experimental data for a three-point bending test of 
HP-Si3N 4 in the region dc > 30 #m, and the distribu- 
tion function of the fracture strength calculated from 
the crack-size data after NDI  coincides well with the 
experimental data. The threshold crack size dp in NDI  
corresponds to the proof  stress ~p. 

Appendix: Proof of Equation 4 
Suppose that penny-shaped cracks are lying perpen- 
dicular to the maximum principal stress and that they 
distribute randomly with respect to their positions and 
sizes. The joint probability density function for the 
fracture location (x, y) and the crack size do at the 
fracture origin in the case of  the three-point bending 
of  a rectangular cross-sectioned beam specimen is 
given by the equation [1, 2] 

0"01 ] 

× exp -Veo (AI) 
aol x ( h  - y)d~c/= j 

Let us transform the variable dc into the maximum 
fracture stress O'm~x using the relation 

= - a o  - -  ( A 2 )  
7"g 

where 

x ( h  - y )  
ac - Lh O'max 

and a~ is the fracture stress at the fracture origin. The 
Jacobian of the transformation from the variable dc 
into O-ma x is written by 

~dc 2 ( 2 ~V2 x(h __ Y) d3/2 
J -  ~O'max - -  /<'Ic 

(A3) 
\ ~,] Lh 

Then we obtain the joint probability density function 
for the fracture location (x, y) and the fracture 
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strength O'ma x as 

hB(°" . . . .  x,y) = 2 b m l ( l )  ml °'maxml-llX(h~hh Y ) I  ml 
\ % /  

[ V~ (O'max)°'l (A4) x e x p _ -  eo\--~ol} j 

The marginal with respect to the fracture strength O'm, x 
is derived from Equation A4 as 

f~max f~ fL h.(a .... x, y)dxdyd~rm.x 

[ = 1 - exp -V~0 (A5) 

which coincides with so-called two-parameter Weibull 
distribution function. 

Since the domain of the variable de of the denomina- 
tor in Equation 3, (0, dp), corresponds to (%, oe) for 
the fracture strength, we obtain 

f:7 f :  fO hB(0" . . . .  X, y )dxdydf fmax  

f a,> V" l  
= exp - E o  t < )  J = ' - F(<rp) (A6) 

For the numerator in Equation 3, 

[ (U ]  ?J = exp -V~0 - exp -Ve0 

= F(O-max) - F(o'p) (A7)  

Thus we obtain Equation 4. 
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